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ABSTRACT

We describe a partition of the points of a graph which is related to its auto-
morphism group. We then prove that the group of a tree is trivial if and only if
this partition is the trivial one, and we formulate an algorithm which produces
such a partition. Some application to graphs in general are also considered.

1. Introduction

In this note we consider the problem of determining when the automorphism
group of a given graph, most often a tree, is trivial. In Section 2, we give a a con-
dition which is necessary and sufficient for the group of a tree to be trivial (Theo-
rem 2.4) and which is sufficient for the triviality of the group of an arbitrary
graph. In Section 3 we describe a simple algorithm which determines for any given
tree whether or not the conditions of Theorem 2.4 are satisfied. We also show
that the same algorithm may be applied to an arbitrary graph and will under
certain conditions determine whether or not the automorphism group is trivial.

We conclude this section with some remarks on terminology and notation.
All graphs considered are finite, undirected, without loops or multiple edges.
The elements of a graph are called points and the order of a graph is the number
of its points. If a is adjacent to b we designate this either by the notation a adjb
or by saying that the (unordered) edge (a,b) is in the graph. We will say that
(a,b) is an edge at a (or at b). The number of edges at a point a is called the
valency of a, designated by v(a). The set of all point adjacent to a given point a
is called the star of a. A path is a sequence of points a;,a,, -+, a, with a;adja;,,
and the edge (a;,a;4,) distinct from (aj,a;,,) for i#j, 1 <i,jsn—-1. If
a and b are distinct points of the graph G, and there is at least one path
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a = a,,a,,a, = b, then we say that the distance from a to b (orfrom bto a)
is the minimum of the lengths of all such paths. A cycle is a sequence of distinct
points a;,--a,, n = 3, in which a;adja;,;, 1 £i£n—1, and a;adja,. A
graph is called assymmetric if its only automorphism is the trivial one. A graph
is called a tree if it contains no cycles and is connected.

2. The star partition

Let G be a graph and « an automorphism on G. Then the orbits of « provide
a partition of the points of G which has certain special properties.

Lemma 2.1, Let « be an automorphism of the graph G. Let & be the parti-
tition of the points of G whose elements are the orbits of a. Then P satisfies the
following properties:

i) If Ae P, then all elements of A have the same valency.

i) Let acAc P and be Be P with aadjb. Then for each a’'€ A there is
b’ € B such that a’ adjb’.

ProoF. Since an automorphism of a graph preserves valency i) is immediate.

Let a,a’,b, A, B be given as in ii). Then since a and a’ are in the same orbit
of o there is some power of o, say «* which maps a to a'. Thus since aadjb it
follows that «(a)adja™(b). But «*(a) = a’ and «*(b) must be in the same orbit
of o as b. Hence, let «*(b) = b’ e B and so a’adjb’.

It is worth noting that even though every partition induced by an automorphism
satisfies these two properties it is not true that every such partition is the set of
orbits of some automorphism. However, this partition is of sufficient importance
to name,

DEFINITION. Let G be a graph and £ a partition of its points satisfying the fol-
lowing properties:

i) If A€, then all elements of 4 have the same valency.

ii) Let acAe? and be Be#? with aadjb. Then for each a’€ A there is
b’e B such that a’adjb’.

We call such a partition a star partition of G.

Every graph G has a star partition, the partition whose elements consist of
singleton sets. We call such a partition the trivial partition. We can now restate
Lemma 2.1 as a condition on the triviality of the automorphism group of a graph.

THEOREM 2.2. Let G be a graph whose only star partition is the trivial par-
tition. Then G is assymmetric.
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The converse of this theorem is not true since there exist graphs each of whose
points have the same valency but which are assymmetric. In such a case a non-
trivial star partition consists of one element containing all of the points of G.
In the case of trees, however, the converse is true.

THEOREM 2.3. Let G be a tree with a non-trivial star partition. Then the

automorphism group of G is not trivial.

We can now put Theorems 2.2 and 2.3 together to get

THEOREM 2.4. A tree is asymmetric if and only if it has only the trivial star

partition.

Before giving the proof of Theorem 2.3 we need to introduce some terminology

and prove some preliminary lemmas.

DEFINITION.Let G be a graph (without loops or multiple edges) and £ a star
partition of G. Then we may regard & as a graph with 4 adj B, A # B if there is
a € A and be B such that a adjb. We call 2 a star partition graph of G, and
denote it by 2.

Tt follows directly from the definition of a star partition that the star partition
graph is in fact a graph. (The condition that 4 £ B guarantees that # has no
loops.)

LeMMaA 2.5. A star partition graph of a tree is a tree.

Proor. Let G be a tree and 2 a star partition of G. Suppose that the star
partition graph 2 contains the cycle A,, -+, 4,. Then there is a sequence of points
ag, 05, a0, With a;adja;,, 1 £i<n—1, a,adja; and a;€4,, aj€4,.
If @) = a, then we have a cycle in G contradicting the fact that G is a tree. If
a) # a,, then we can find a sequence ai,a5, -, a,,af similarly. If any of these
is the same as in the previous sequence, again we have produced a cycle in G,
a contradiction. If not, we simply continue to iterate this process and since G
is finite we will eventually produce a cycle in G. Thus, the star partition graph
contains no cycles. Finally since G is connected, 2 is connected and so is a tree.

Since the partition £ of G will be our main focus of attention it is necessary
to introduce a refinement of our notion of valency relative to 2.

DEFINITION. Let & be a star partition of the graph G. Let 4,B€ % and let
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acA. (A need not be different from B). The valency of a relative to B is the
number of points of B which are adjacent to a. We denote this integer by vg(a).

The next two lemmas are technical ones which will be needed in the proof
of 2.3,

LEMMA 2.6. Let P be a star partition of the tree G and let ac Ae P with
vya)> 1. Then there is Be Z,B# A, cc A, and e,fe B such that

i) Thereis a pathin A from a to c,

i) vc)=1 and

iii) cadje, cadjf.

ProOF. The set of points in 4 span a subgraph of G which must therefore be
a graph with no cycles. Hence, in the connected component of this subgraph
which contains a there must be a point of valency 1 since the valency of a in this
subgraph is greater than 1. Call such a point ¢. Now the valency of any point,
in particular ae A4, is given by v(a) = X, .»v4(a). This sum can, of course,
be restricted to those 4; which are adjacent to 4 in & plus A itself. But this set
of A;’s is the same for ¢ as it is for a and hence if v, (c) = 1 for all 4,’s adjacent
to A is would follow that the valency v(a) > v(c). This contradicts the fact that
v(a) = v(c) since a and ¢ are in the same element of a star partition. Thus there
must be some Be 2 such that vg(c) > 1 (and hence B # A).

Lemma 2.7. Let & be a star partition of the graph G. Let a,a’'c Ae?P
with va’) = 0 and vg(a) = 2 for some Be P. Then there is B'e P such that
vg(a’) 2 2.

ProoF. Since a,a’ € 4 it follows that v(a) = v(a’). If ve(a’) <2 for all Ce 2,
then since ve(a) - ve(a’) = 0 if and only if v(a) = v{a’) = 0, there must be
B’ e # such that vg(a’) = 2.

Finally, we will need to deal with a special sort of subtree in producing an auto-
morphism of the tree G.

DEerFINITION. Let a be a point of a tree G with v(a) =2. We produce a subgraph
of G in the following manner. Delete all the edges incident at a except 2 of them.
Now consider the connected component of the reduced graph which contains the
point a. We call this subgraph a bi-tree at a.

LemMA 2.8. Let G be a tree, a a point of G and H a bi-tree at a of G. Then
any automorphism of H which fixes a can be extended to an automorphism of
G by defining it to fix all points of G not in H.
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PrROOF. Let &’ be an automorphism of H with a’(a) = a. Now define « on G
by a(x) = «'(x) when xe H and «(x) = x otherwise. To verify that « is an auto-
morphism of G it suffices to show that if uadjv (in G), then a(u) adja(v) (in G)
and that « is one-to-one. Clearly « is one-to-one on G since it is one-to-one on H.
Now if u,v ¢ H, uadjv, then a(u) = u, o(v) = v and so a(u)adjo(v). If u,ve H
and uadjv not only in G but also in H, then clearly o(u)adjo(v). If u,veH,
uadjv in G but not in H, then it follows that there are two distinct paths from u
to vin G, contradicting the fact that G is a tree. Finally, if ue H. v¢ H and uadjv
in G it follows that u = a and so since a(a) = a, o(u)adju(v).

We are now ready to give the proof of Theorem 2.3.

PrOOF OF 2.3. Let & be a non-trivial star partition of the tree G.

Case I. For all ae G and for all Be 2, vg(a) < 1 except possibly if aeB.
If Ac 2, then for all x,ye A, v (x) =v,(y). For the condition above implies
that vg(x) = 0 or 1 and if vg(x) = 1, then vg(y) = 1. Hence, since v(x) = u(y)
it follows that v,(x) = v,(y). Furthermore, since G is a tree either v (x) =0
for all xe A or v,(x) = 1 for all xe A. Now if each element of & consisted only
of isolated points, then it follows that the graph G is not a tree. Forleta,be A 2.
Then since G is connected there is a path in G from a to b with no repetitions.
Thus there is a path in the star partition graph 2 beginning at 4. But since G
is a tree, 2 is a tree and so this path beginning at A and ending at A must have a
repetition in it. Let B be the first such repetition. (Such a path is, of course, unique
since the path from a to b is unique.) It is easy to see that this repetition is either
of the form B, B or B, C, B. In the case of B, B we must have a pair of points in B
which are adjacent—a possibility ruled out by assumption. If the repetition takes
the form B, C, B, then it follows that C contains a point ¢ with vg(c) = 2—con-
trary to our initial assumption. Hence the assumption that each element of &
consisted only of isolated points when considered as a subgraph is false. There-
for, there is an A e % with v,(x) = 1 for all xe 4. Now we will show that there
is precisely one such element in #. For let A,Be # with v,(x) =1 for all xe 4
and vg(y) = 1 for all ye B. Now there is a unique path in the graph 2 from A
to Bsay A = A, A,,--,A, = B and hence for each point in A4 there is a path
which contains precisely one point from each of 4;, i = 1,---,7. Furthermore,
we can guarantee that these paths are all disjoint by choosing 4 and B in such a
way that for each 4;, | <i<n, v,(x) = O for all x e A4;. Thus, this set of paths
(points and edges) together with the edges ‘‘inside’” A and “‘inside’” B constitutes
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a subgraph of G in which each point has valency 2—contradicting that G is a tree.
Now let 4 be the unique element of # with v,(x) = 1 for all xe A. We now show
that A consists precisely of two points a, a’ with aadja’. Clearly, there are such a
pair of points in A. Assume there is another point a, € A. Since G is connected,
there is a path from a, to @ in G and hence a path from 4 to 4 in 2 consisting
of more than A itself. But since every point in B, B # A4 has valency 0 in B and
ve(x) £ 1 for all Ce 2 it follows that such a path from 4 to 4 must be a cycle
contradicting the fact that G is a tree. Hence, 4 consists only of a,a’ with aadja’.
Further, every other B e & consists of a pair of points of valency 0 in B. For if
Be 2, then there is a path from B to 4 in & and hence a point b in B connected
to, say a by a path not contfaining a’. Clearly there is therefore a point b’ € B,
b’ # b, such that b’ is connected to a’ by a path not containing a. Now if there
were a third point "€ B, then G would have to contain a point with relative
valence greater than one, contradicting our assumption. Now we define the map
o: G — Gbya(a) = a’ and w(b) = b’ where b, b’ e Be &, b and b’ are respectively
the points connected to a and a’ as above. The verification that « is an automor-
phism of G is direct and is left for the reader.

Case 11. There is a point a€ G and Be % such that vg(a) > 1 and a¢ B.

Thus, there are points b,ce B with aadjb and aadjc. Hence, we form the
bi-tree at a obtained by deleting all edges at a except (a, b) and (a,c) and call it H.
We will assume that ¢ and H have been chosen in such a way that the number
of points of H is minimal. We will now show that if de H, d # a, then
ve(d) £ 1 for all Ce 2. (Note, of course, that v(d) is computed in G.) Hence,
suppose that H contains a point d with v(d) > 1 for some Ce 2. First, suppose
that d¢ C and let deDeP. Let e,fe C with dadje and dadjf. We now form
the bi-tree K at d by deleting all edges at d except (d, ¢) and (d,f). If K does not
contain the point a, then it is a proper subgraph of H containing a point ‘‘like”’
a, thus contradicting the minimality of H. For if k € K, then there is a path from
kto d in K and a path from d to a in H. But if k¢ H, then the path from k to d
must contain one of the edges deleted in the formation of H. But this implies that
a is an element of the path from k to d in K and hence that a € K, a contradiction.
Thus, we assume that the subgraph K contains a. Let 4,De @ such that ae 4
and d e D. Then there is a path from D to A in the graph 2 and two distinct paths
from e and f consisting of one point each from this path in 2 from e or f to a.
Assume that there is such a path from e to a. Then there is a similar but disjoint
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path from f to some a’e€ 4, a’ # a. (Moreover, the path from e must include
either b or ¢, for if not there are two distinct paths from d to a, a contradiction.)
Now, among all such points d assume that we have chosen one whose distance
from a is maximum. If v,(a’) = 0, then since vg(a) = 2 it follows from Lemma
2.7 that there is B’ € 2 such that vga’) = 2. Now consider a bi-tree L at a’
with two edges from a’ to B'. If L contains a we have a contradiction to the
maximality of the path from d to a since the distance from a’ to a is greater
than that from d to a. Hence, L does not contain a. For otherwise the path from
d to a contains a, . But this implies that Lis a proper subgraph of H, a contradic-
tion. Hence, v(a’)>0 and so a’ is connected to another point a” € A, with v,(a")
=1, by a path in 4. (Notice that a” # a since G is a tree.) Hence, there is a
path through the same elements of 2 “‘parallel” to the path fromd to a, with-
out duplicating any points previously used, ending with d' e D. Again it follows
that d’ is connected inDto a point d"eD, d” # d', d” # d and there is a path
from d” to a point in 4 without duplicating any points previously used. Since G is
finite this process mustend yielding a contradiction. Hence, it follows that either
vp(d) > 1 or that ve(d) £ 1 for all Ce 2. Thus, assume that v,(d) > 1. It fol-
lows from Lemma 2.6 that there is de D connected to d by a path in D with d a
point “‘like”” @ and we arrive ata contradiction by the previous argument.
Thus, we have proven that every point u, u # a, of the bi-tree H has the property
ve(u) £ 1 for all Ce 2. Now every point of H other than a is connected either
to b or to ¢ but not to both. We will designate such points as b-points or c-points,
respectively. If E e 2 and E contains points of H we claim that E contains precisely
one b-point and one c-point. To see this suppose that there is a point d € H, d # a,
with de D and vy(d) = 1. (We have already dealt with the case vy(d) > 1.) Since
d e H there is a path from d to a through a unique set of elements of 2. But since
vp(d) = 1 there is d' e D, dadjd’. Thus there will be a path from d’ to an ele-
ment a’ € A containing exactly one point in each element of the previous path
in 2. Clearly, a’ # a and vga’) < 1 for all Be®. Thus vy(a’) = 1 and so
there is a"€ A, a” # a, with a’ adja". Hence, there is a path back to D from a”
“parallel” to the one from d’ to a’. But since G is finite this process must even-
tually end in a point of valency 1 in G, a contradiction. Therefore, we have proven
that vp{d) = O for all de H, d e D except possible d = a. Thus it follows that if
A 7% De2 has points of H then it has exactly one b-point and one c-point. Also
H N A contains only a. We now define the map a: H — H by: a(a) = a and if
x, y € D are the b-point and ¢-point of D respectively, then a(x) = y and a(y) = x.
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Clearly, this map is an automorphism on H since the only adjacency relations are
those between adjacent elements of 2 and the definition of star partition guarantees
that these are preserved. We now invoke Lemma 2.8 and « is a non trivial auto-
morphism (of order 2) on G.

ReMARK 1. Although Theorem 2.3 is stated for trees it is easy to modify the
proof above and prove the same result without the requirement of connectitivity.
Thus the theorem holds for ““forests’” as well.

3. The star algorithm

In this section we will describe a simple algorithm which produces a star parti-
tion for any graph G. Further we will show that the orbit partition of the auto-
morphism group of the graph is a refinement of this partition.

P,. The partition 2, is the partition of the points of G into sets of equal
valency.

2,;. Form the star of each element of 2;_,. (The star of a set of points is the
union of the stars of its members.) Partition these stars into sets of equal valency
and add to them the elements of #;_, . This collection of sets will form a partially
ordered set under inclusion. Close this partially ordered set by the operation of
intersection and relative complementation. That is if A and B are elements of the
partially ordered set form A NB, A~ (ANB) and B — (A N B). The minimal
non-empty elements of this closed partially ordered set will be the elements of 2,.

2, = #.If nis the smallest positive integer with Z,_; = Z,, thenlet Z, = &
and stop.

We will refer to the partition & as the standard star partition.

Since at each step in the algorithm above we replace a given partition by a re-
finement and the original set is finite it is clear that the process will stop after a
finite number of steps. Clearly the elements of 2, consist of points of equal valency.
Now suppose that A,Be #? with ae A, be B and aadjb. Let a’ € A and suppose
that there is no element b’ € B such that a"adjb’. Then the star of B, B*, will
not contain the element a’ and hence 4 N B* will be a proper subset of 4. This
implies that at some stage in the algorithm A will be replaced by proper subsets
and hence A ¢ #. Hence we have proven the following theorem.

THEOREM 3.1. Let G be a graph and # the standard star partition of G.
Then 2 is a star partition of G.

Furthermore, we will show that the algorithm provides the coarsest of all star
partitions.
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THEOREM 3.2. Let 2 be the standard star partition of the graph G. Let
P’ be another star partition of G. Then for each A'e P’ there is AcP such
that A’ < A.

Proor. We will prove the theorem by induction on the number of steps needed
for the completion of the algorithm. First, since the elements of 2’ consist of
points of equal valency the theorem is true for #,. Now assume it is true for 2;
and let A'e?’, AeP; with A’ < A. Let BeZ,; and consider 4 N(star of B).
We must show that either 4’ = A N (star of B) or that A’ N A N (star of B) = @.
Let a’ € A’ with a’ e (star of B) and let a} be another point in A’. Since a’ € (star
of B), there is a b’ e B with a’adjb’ and B’ e #’ with b’e B’. By the induction
assumption B’ = B and so there is a b; € B’ = B with a) adj b}. Hence A’ = (star
of B). This completes the proof.

COROLLARY 3.3. Let G be a graph If the standard star participation of G
is trivial (consists only of singleton sets), then G is assymmetric.

Proor. Since the partition of G into the orbits of its automorphism group is a
star partition, it follows from Theorem 3.2 that it will be a refinement of its standard
star partition. Thus, if the standard star partition is trivial the orbits of the auto-
morphism group are singleton sets and the graph G is assymmetric.

ReMARK 2. The main result of the previous section shows that when the auto-
morphism group of the tree G is trivial, then a star partition must be trivial and
hence gives the orbits of the automorphism group. 1t is in general not the case,
however, that the elements of the standard star partition are the orbits of the
automorphism group. For let G be the graph

e

|

Fig. 1

Then the following is the standard star partition
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But it is easy to see that the partition of G into the orbits of its automorphism

group is given by

ReMARK 3. The star algorithm given above was formulated for maximum
clarity and simplicity and not necessarily for speedy computability. Tt is not
difficult, however, to refine the algorithm to yield a more efficient procedure for
arriving at the standard star partition.

ReMARK 4. The author first used the star algorithm in testing a conjecture
about the automorphism group of a tensor product of a pair of assymmetric graphs.
(See [1] for a definition of tensor product). The graphs in question were

@J‘J“I Oondctv

Fig. 4

The tensor product is not a tree or even a forest. Applying the star algorithm
does, however, yield a trivial partition and so shows it to be assymmetric. This
raises the question about which graphs are assymmetric but have a non-trivial
star partition.

We hope to pursue these questions in a later note.
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