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ABSTRACT 

We describe a partition of the points of a graph which is related to its auto- 
morphism group. We then prove that the group of a tree is trivial if and only if 
this partition is the trivial one, and we formulate an algorithm which produces 
such a partition. Some application to graphs in general are also considered. 

1. Introduction 

In this note we consider the problem of determining when the automorphism 

group of a given graph, most often a tree, is trivial. In Section 2, we give a a con- 

dition which is necessary and sufficient for the group of a tree to be trivial (Theo- 

rem 2.4) and which is sufficient for the triviality of  the group of an arbitrary 

graph. In Section 3 we describe a simple algorithm which determines for any given 

tree whether or not the conditions of  Theorem 2.4 are satisfied. We also show 

that the same algorithm may be applied to an arbitrary graph and will under 

certain conditions determine whether or not the automorphism group is trivial. 

We conclude this section with some remarks on terminology and notation. 

All graphs considered are finite, undirected, without loops or multiple edges. 

The elements of  a graph are called points and the order of a graph is the number  

of  its points. I f  a is adjacent to b we designate this either by the notation a adj b 

or by saying that the (unordered) edge (a, b) is in the graph. We will say that 

(a, b) is an edge at a (or at b). The number of  edges at a point a is called the 

valency of a,  designated by v(a). The set of  all point adjacent to a given point a 

is called the star of a. A path is a sequence of points al ,  a2, ..., a ,  with a i adj at+ 1 

and the edge (ai, a~+l) distinct f rom (aj, aj+ 0 for i # j ,  1 < i,j <= n - 1 .  I f  

a and b are distinct points of  the graph G, and there is at least one path 
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a = al, a2, "", a, = b, then we say that the distance from a to b (or from b to a) 

is the minimum of the lengths of all such paths. A cycle is a sequence of distinct 

points al , . . .a  . ,  n > 3, in which aiadjai+ 1, 1 <_ i <_ n - l ,  and aiadja . .  A 

graph is called assymmetric if its only automorphism is the trivial one. A graph 

is called a tree if it contains no cycles and is connected. 

2. The star partition 

Let G be a graph and ~ an automorphism on G. Then the orbits of g provide 

a partition of the points of G which has certain special properties. 

LEMMA 2.1. Let ~ be an automorphism of the graph O. Let ~ be the parti- 

tition of the points of G whose elements are the orbits of ~. Then ~ satisfies the 

following properties: 

i) I f  A e ~ , then all elements of A have the same valency. 

ii) Let a e A e ~  and b e B e ~  with aadjb.  Then for each a' e A  there is 

b' ~ B such that a' adj b'. 

PROOF. Since an automorphism of a graph preserves valency i) is immediate. 

Let a, a' ,  b, A, B be given as in ii). Then since a and a '  are in the same orbit 

of e there is some power of  e, say c~ x which maps a to a'. Thus since a adj b it 

follows that eX(a)adj c~(b). But ~X(a) = a '  and eX(b) must be in the same orbit 

of c~ as b. Hence, let ~(b)  = b' e B and so a' adj b'. 

It is worth noting that even though every partition induced by an automorphism 

satisfies these two properties it is not true that every such partition is the set of 

orbits of some automorphism. However, this partition is of sufficient importance 

to name. 

DEFINmON. Let G be a graph and N a partition of its points satisfying the fol- 

lowing properties: 

i) If A e ~ ,  then all elements of A have the same valency. 

ii) Let a e A e ~  and b e B E N  with aadjb.  Then for each a ' e A  there is 

b' e B such that a' adj b'. 

We call such a partition a star partition of G. 

Every graph G has a star partition, the partition whose elements consist of 

singleton sets. We call such a partition the trivial partition. We can now restate 

Lemma 2.1 as a condition on the triviality of the automorphism group of a graph. 

THEOREM 2.2. Let G be a graph whose only star partition is the trivial par- 

tition. Then G is assymmetric. 
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The converse of this theorem is not true since there exist graphs each of whose 

points have the same valency but which are assymmetric. In such a case a non- 

trivial star partition consists of one element containing all of the points of G. 

In the case of trees, however, the converse is true. 

THEOREM 2.3. Let G be a tree with a non-trivial star partition. Then the 

automorphism group of G is not trivial. 

We can now put Theorems 2.2 and 2.3 together to get 

THEOREM 2.4. A tree is asymmetric if  and only if  it has only the trivial star 

partition. 

Before giving the proof of Theorem 2.3 we need to introduce some terminology 

and prove some preliminary lemmas. 

DEFINITION.Let G be a graph (without loops or multiple edges) and ~ a star 

partition of G. Then we may regard ~ as a graph with A adj B, A ~ B if there is 

a • A and b • B such that a adj b. We call ~ a star partition graph of G, and 

denote it by f t .  

It  follows directly from the definition of a star partition that the star partition 

graph is in fact a graph. (The condition that A ~ B guarantees that f i  has no 

loops.) 

LEMMA 2.5. A star partition graph of a tree is a tree. 

PROOF. Let G be a tree and ~ a star partition of G. Suppose that the star 

partition graph ~ contains the cycle Ai , . . . ,  A, .  Then there is a sequence of points 
! 

al, a2,...,an, a'~ with a~adja~+i, 1 < i < n - l ,  anadja'l and a~•A, ,  a l e A i .  

I f  a] = al  then we have a cycle in G contradicting the fact that G is a tree. If  

' . . . . .  similarly. I f  any of these a~ y~ a l ,  then we can find a sequence a~,a2,. . . ,a, ,al  

is the same as in the previous sequence, again we have produced a cycle in G, 

a contradiction. If  not, we simply continue to iterate this process and since G 

is finite we will eventually produce a cycle in G. Thus, the star partition graph 

contains no cycles. Finally since G is connected, ~ is connected and so is a tree. 

Since the partition ~ of G will be our main focus of attention it is necessary 

to introduce a refinement of our notion of valency relative to ~ .  

DEFINITION. Let ~ be a star partition of the graph G. Let A, B • ~ and let 
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a ~ A .  (A need not be different from B). The valency of a relative to B is the 

number of  points of  B which are adjacent to a. We denote this integer by v~(a). 

The next two lemmas are technical ones which will be needed in the proof  

of  2.3. 

LEMMA 2.6. Let ~ be a star partition of the tree G and let a ~ A ~ ~ with 

va(a ) > 1. Then there is B 6 ~ , B # A ,  c ~ A ,  and e , f  6 B such that 

i) There is a path in A from a to c, 

ii) va(c ) = 1 and 

iii) c adj e, c adj f .  

PROOF. The set of  points in A span a subgraph of  G which must therefore be 

a graph with no cycles. Hence, in the connected component  of  this subgraph 

which contains a there must be a point of valency i since the valency of a in this 

subgraph is greater than 1. Call such a point c. Now the valency of any point, 

in particular a ~ A,  is given by v(a) = Y~a,~ vA,(a). This sum can, of course, 

be restricted to those A i which are adjacent to A in ~ plus A itself. But this set 

of  Ai's is the same for c as it is for a and hence if VA,(C) ---- 1 for all A:'s adjacent 

to A is would follow that the valency v(a) > v(c). This contradicts the fact that 

v(a) = v(c) since a and c are in the same element of a star partition. Thus there 

must be some B ~ ~ such that vB(c) > 1 (and hence B # A). 

LEMMA 2.7. Let # be a star partition of the graph G. Let a ,a '~  A ~  

with va(a'  ) = 0  and vB(a ) > 2 f o r  some B e ~ .  Then there is B' ~ such that 

vw(a' ) > 2. 

PROOF. Since a, a '  ~ A it follows that v(a) = v(a'). I f  vc(a') < 2 for all C ~ ~ ,  

then since vc(a)" vc(a')  = 0 if and only if vc(a) = vc(a') = 0, there must be 

B' 6 #  such that vw(a') > 2. 

Finally, we will need to deal with a special sort of  subtree in producing an auto- 

morphism of the tree G. 

DEFINITION. Let a be a point of  a tree G with v(a) > 2. We produce a subgraph 

of G in the following manner. Delete all the edges incident at a except 2 of  them. 

Now consider the connected component of  the reduced graph which contains the 

point a .  We call this subgraph a bi-tree at a. 

LEMMA 2.8. Let G be a tree, a a point of G and H a bi-tree at a of G. Then 

any automorphism of H which fixes a can be extended to an automorphism of 

G by defining it to f ix  all points of G not in H .  
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PROOF. Let e '  be an automorphism of  H with e'(a) = a.  Now define c~ on G 

by c~(x) = e ' (x)  when x e H and c~(x) = x otherwise. To verify that c~ is an auto- 

morphism of G it suffices to show that if u adj v (in G), then c~(u)adj e(v) (in G) 

and that e is one-to-one. Clearly c~ is one-to-one on G since it is one-to-one on H. 

Now if u, v ~ H ,  u adj v, then e(u) = u, c~(v) = v and so c~(u) adj c~(v). I f  u, v e H 

and u adj v not only in G but also in H ,  then clearly ~(u)adj c~(v). I f  u, v e H ,  

u adj v in G but not in H ,  then it follows that there are two distinct paths from u 

to v in G, contradicting the fact that G is a tree. Finally, if u ~ H ,  v ~ H and u adj v 

in G it follows that u = a and so since c~(a) = a,  e (u)adje (v ) .  

We are now ready to give the proof  of  Theorem 2.3. 

PROOF OF 2.3. Let N be a non-trivial star partition of the tree G. 

Case I. For all a e G and for all B ~ # ,  vB(a) < 1 except possibly if a EB.  

I f  A ~ # ,  then for all x, y ~ A ,  v a ( x ) =  va(y). For the condition above implies 

that vB(x) = 0 or 1 and if vB(x) = 1, then vB(y) = 1. Hence, since v(x) = v(y) 

it follows that v A ( x ) =  va0') .  Furthermore, since G is a tree either v a ( x ) =  0 

for all x ~ A or va(x ) = 1 for all x ~ A. Now if each element of  ~ consisted only 

of isolated points, then it follows that the graph G is not a tree. For let a, b ~ A ~ ~ .  

Then since G is connected there is a path in G from a to b with no repetitions. 

Thus there is a path in the star partition graph ~ beginning at A. But since G 

is a tree, ~ is a tree and so this path beginning at A and ending at A must have a 

repetition in it. Let B be the first such repetition. (Such a path is, of course, unique 

since the path from a to b is unique.) It  is easy to see that this repetition is either 

of  the form B, B or B, C, B. In the case of  B, B we must have a pair of  points in B 

which are adjacent--a  possibility ruled out by assumption. I f  the repetition 'takes 

the form B, C, B, then it follows 

trary to our initial assumption. 

consisted only of isolated points 

that C contains a poin t e with vB(c) > 2 - - c o n -  

Hence the assumption that each element of  

when considered as a subgraph is false. There- 

for, there is an A e ~ with va(x) = 1 for all x e A. Now we will show that there 

is precisely one such element in :~. For let A, B e # with va(x) = 1 for all x e A 

and vB(y) = 1 for all y e B. Now there is a unique path in the graph ~ from A 

to B say A = A1,A2,  . . . ,A ,  = B and hence for each point in A there is a path 

which contains precisely one point from each of A~, i = l , . . . , r .  Furthermore, 

we can guarantee that these paths are all disjoint by choosing A and B in such a 

way that for each A, ,  1 < i < n ,  vat(x) = 0 for all x s A~. Thus, this set of  paths 

(points and edges) together with the edges "inside" A and "inside" B constitutes 
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a subgraph of G in which each point has valency 2--contradicting that G is a tree. 

Now let A be the unique element of ~ with va(x ) = 1 for all x ~ A. We now show 

that A consists precisely of  two points a, a '  with a adj a'. Clearly, there are such a 

pair of  points in A. Assume there is another point a2 ~ A. Since G is connected, 

there is a path from a 2 to a in G and hence a path from A to A in ~ consisting 

of more than A itself. But since every point in B,  B ~ A  has valency 0 in B and 

Vc(X) < 1 for all C ~ ~ it follows that such a path from A to A must be a cycle 

contradicting the fact that G is a tree. Hence, A consists only of  a, a '  with a adj a'. 

Further, every other B ~ ~ consists of  a pair of points of  valency 0 in B. For if 

B 6 ~ ,  then there is a path from B to A in ~ and hence a point b in B connected 

to, say a by a path not containing a ' .  Clearly there is therefore a point b ' ~  B, 

b '  ~ b, such that b'  is connected to a '  by a path not containing a. Now if there 

were a third point b" ~B ,  then G would have to contain a point with relative 

valence greater than one, contradicting our assumption. Now we define the map 

c~: G -o G by ~(a) = a '  and , (b)  = b'  where b, b' ~ B ~ ~ ,  b and b'  are respectively 

the points connected to a and a' as above. The verification that ~ is an automor-  

phism of  G is direct and is left for the reader. 

Case II. There is a point a ~ G  and B ~  such that vn(a)>l  and a ~ B .  

Thus, there are points b, c ~ B with a adj b and a adjc. Hence, we form the 

bi-tree at a obtained by deleting all edges at a except (a, b) and (a, c) and call it H. 

We will assume that a and H have been chosen in such a way that the number 

of  points of  H is minimal. We will now show that if d e l l ,  d # a ,  then 

vc(d) < 1 for all C e ~ .  (Note, of course, that vc(d) is computed in G.) Hence, 

suppose that H contains a point d with vc(d ) > 1 for some C ~ ~ .  First, suppose 

that d ~ C and let d ~ D ~ ~ .  Let e,f~ C with d adj e and d adjf .  We now form 

the bi-tree K at d by deleting all edges at d except (d, e) and (d, f) .  I f  K does not 

contain the point a ,  then it is a proper subgraph of H containing a point " l ike"  

a ,  thus contradicting the minimality of H .  For if k e K ,  then there is a path from 

k to d in K and a path from d to a in H .  But if k ~ H, then the path f rom k to d 

must contain one of the edges deleted in the formation of H .  But this implies that 

a is an element of  the path from k to d in K and hence that a e K, a contradiction. 

Thus, we assume that the subgraph K contains a .  Let A,D ~ ~ such that a ~ A 

and d e D. Then there is a path from D to A in the graph ~ and two distinct paths 

from e and f consisting of one point each from this path in ~ from e or f to a. 

Assume that there is such a path from e to a .  Then there is a similar but disjoint 
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path from f to some a'~ A, a' ~ a. (Moreover, the path from e must include 

either b or c, for if not there are two distinct paths from d to a, a contradiction.) 

Now, among all such points d assume that we have chosen one whose distance 

from a is maximum. I f  va(a'  ) = 0, then since v~(a) > 2 it follows from Lemma 

2.7 that there is B' ~ ~ such that vs,(a') > 2. Now consider a bi-tree L at a' 

with two edges from a '  to B ' .  I f  L contains a we have a contradiction to the 

maximality of  the path from d to a since the distance from a '  to a is greater 

than that from d to a .  Hence, L does not contain a. For otherwise the path from 

d to a contains a~. But this implies that L i s a  proper subgraph of H ,  a contradic- 

tion. Hence, va(a') > 0 and so a '  is connected to another point a" ~ A, with va(a" ) 

-- 1, by a path in A. (Notice that a" ~ a since G is a tree.) Hence, there is a 

path through the same elements of  ~ "paral le l"  to the path from d to a ,  with- 

out duplicating any points previously used, ending with d'  ~ D. Again it follows 

that d '  is connected in D to a point d" ~ D, d" ~ d', d" ~ d and there is a path 

from d" to a point in A without duplicating any points previously used. Since G is 

finite this process must end yielding a contradiction. Hence, it follows that  either 

vD(d) > 1 or that vc(d ) < 1 for all C ~ ~ .  Thus, assume that vo(d) > 1. It  fol- 

lows from Lemma 2.6 that there is d e  D connected to d by a path in D with d a 

point " l ike"  a and we arrive at a contradiction by the previous argument. 

Thus, we have proven that every point u, u ~ a, of  the bi-tree H has the property 

Vc(U) < 1 for all C ~ ~ .  Now every point of  H other than a is connected either 

to b or to c but not to both. We will designate such points as b-points or c-points, 

respectively. I f  E e ~ and E contains points of  H we claim that E contains precisely 

one b-point and one c-point. To see this suppose that there is a point d ~ H, d # a, 

with d ~ D and vD(d ) = 1. (We have already dealt with the case vD(d) > 1.) Since 

d ~ H there is a path from d to a through a unique set of  elements of  ~ .  But since 

vD(d) = 1 there is d'~ D, dadjd'. Thus there will be a path from d' to an ele- 

ment a ' ~  A containing exactly one point in each element of  the previous path 

in ~ .  Clearly, a ' # a  and v~(a')< 1 for all B ~ .  Thus va(a'  ) =  1 and so 

there is a"~  A, a" # a, with a' adj a". Hence, there is a path back to D from a" 

"para l le l"  to the one from d' to a ' .  But since G is finite this process must even- 

tually end in a point of  valency 1 in G, a contradiction. Therefore, we have proven 

that vD(d) = 0 for all d e H ,  d e D except possible d = a. Thus it follows that if 

A # D e ~'  has points of  H then it has exactly one b-point and one c-point. Also 

H n A contains only a. We now define the map ~: H ~ H by: a(a) = a and if 

x, y ~ D are the b-point and c-point of  D respectively, then a(x) = y and a(y) = x. 
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Clearly, this map is an automorphism on H since the only adjacency relations are 

those between adjacent elements of ~ and the definition of star partition guarantees 

that these are preserved. We now invoke Lemma 2.8 and ~ is a non trivial auto- 

morphism (of order 2) on G. 

REMARK 1. Although Theorem 2.3 is stated for trees it is easy to modify the 

proof above and prove the same result without the requirement of connectitivity. 

Thus the theorem holds for "forests"  as well. 

3. The star algorithm 

In this section we will describe a simple algorithm which produces a star parti- 

tion for any graph G. Further we will show that the orbit partition of the auto- 

morphism group of the graph is a refinement of this partition. 

~o .  The partition ~o is the partition of the points of G into sets of equal 

valency. 

~ i .  Form the star of each element of ~ i -  1. (The star of a set of points is the 

union of the stars of its members.) Partition these stars into sets of equal valency 

and add to them the elements of ~i_ 1 • This collection of sets will form a partially 

ordered set under inclusion. Close this partially ordered set by the operation of 

intersection and relative complementation. That is if A and B are elements of the 

partially ordered set form A C3 B, A - (A c3 B) and B - (A c3 B). The minimal 

non-empty elements of this closed partially ordered set will be the elements of ¢~,. 

N,  = N.  If n is the smallest positive integer with ~,,_ 1 = N,, then let N, = 

and stop. 

We will refer to the partition ¢~ as the standard star partition. 

Since at each step in the algorithm above we replace a given partition by a re- 

finement and the original set is finite it is clear that the process will stop after a 

finite number of steps. Clearly the elements of ~i  consist of points of equal valency. 

Now suppose that A, B ~ ~ with a ~ A, b ~ B and a adj b. Let a '6  A and suppose 

that there is no element b' ~ B such that a' adj b ' .  Then the star of B, B*, will 

not contain the element a' and hence A C3B* will be a proper subset of A. This 

implies that at some stage in the algorithm A will be replaced by proper subsets 

and hence A ~ N.  Hence we have proven the following theorem. 

THEOREM 3.1. Let G be a graph and ~ the standard star partition of  G. 

Then t~ is a star partition of G. 

Furthermore, we will show that the algorithm provides the coarsest of all star 

partitions. 
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THEOREM 3.2. Let ~ be the standard star partition of the graph G. Let 

~ '  be another star partition of G. Then for each A 'eN '  there is A e N  such 

that A' ~_ A. 

PROOF. We will prove the theorem by induction on the number of steps needed 

for the completion of the algorithm. First, since the elements of ~ '  consist of 

points of equal valency the theorem is true for N0. Now assume it is true for Ni 

and let A ' e ¢  ~', A e N i  with A' _ A. Let B e N  t and consider A n (star of B). 

We must show that either A' c A C3(star of B) or that A' C~ A C3(star of B) = ~. 

Let a' e A' with a' ~ (star of B) and let a[ be another point in A' .  Since a' e (star 

of B), there is a b ' e  B with a' adj b' and B ' e  ~ '  with b ' e  B'. By the induction 

assumption B' ~ B and so there is a b~ e B' ~ B with a' 1 adj b'l. Hence A' ~ (star 
of B). This completes the proof. 

COROLLARY 3.3. Let G be a graph I f  the standard star participation of G 

is trivial (consists only of singleton sets), then G is assymmetric. 

PROOF. Since the partition of G into the orbits of its automorphism group is a 

star partition, it follows from Theorem 3.2 that it will be a refinement of its standard 

star partition. Thus, if the standard star partition is trivial the orbits of the auto- 

morphism group are singleton sets and the graph G is assymmetric. 

REMARK 2. The main result of the previous section shows that when the auto- 

morphism group of the tree G is trivial, then a star partition must be trivial and 

hence gives the orbits of the automorphism group. It is in general not the case, 

however, that the elements of the standard star partition are the orbits of the 

automorphism group. For let G be the graph 

Fig. 1 

Then the following is the standard star partition 

,f ~ -~-' --~ ...... 
Fig. 2 

I 
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But it is easy to see that the partition of G into the orbits of its automorphism 

group is given by 

,. / 

/ \ 
/ j 

\ J 

S \I 
\ / 

_ _ _ J  

Fig. 3 

REMARK 3. The star algorithm given above was formulated for maximum 

clarity and simplicity and not necessarily for speedy computability. It is not 

difficult, however, to refine the algorithm to yield a more efficient procedure for 

arriving at the standard star partition. 

REMARK 4. The author first used the star algorithm in testing a conjecture 

about the automorphism group of a tensor product of a pair of assymmetric graphs. 

(See [1-] for a definition of tensor product). The graphs in question were 

0 ,,0 0 ~ o 0 and o o ~ o 

Fig. 4 

The tensor product is not a tree or even a forest. Applying the star algorithm 

does, however, yield a trivial partition and so shows it to be assymmetric. This 

raises the question about which graphs are assymmetric but have a non-trivial 

star partition. 

We hope to pursue these questions in a later note. 
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